F(x)=x^2-14x+49/15

Simple and best practice solution for F(x)=x^2-14x+49/15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=x^2-14x+49/15 equation:



(F)=F^2-14F+49/15
We move all terms to the left:
(F)-(F^2-14F+49/15)=0
We get rid of parentheses
-F^2+F+14F-49/15=0
We multiply all the terms by the denominator
-F^2*15+F*15+14F*15-49=0
Wy multiply elements
-15F^2+15F+210F-49=0
We add all the numbers together, and all the variables
-15F^2+225F-49=0
a = -15; b = 225; c = -49;
Δ = b2-4ac
Δ = 2252-4·(-15)·(-49)
Δ = 47685
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{47685}=\sqrt{289*165}=\sqrt{289}*\sqrt{165}=17\sqrt{165}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(225)-17\sqrt{165}}{2*-15}=\frac{-225-17\sqrt{165}}{-30} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(225)+17\sqrt{165}}{2*-15}=\frac{-225+17\sqrt{165}}{-30} $

See similar equations:

| 22/4=y | | 88+22+47+23=x | | -3x+7-4(x-1)=-(2x-4)-4x+4 | | 80(2x+6)=180 | | 5x+47+23=180 | | z^2-18=72 | | 4x=(10/9x)+1 | | x=65+25+90 | | 2p-8=12-1/2p | | -4•-1/4=c | | 16x-1=85 | | x^2+12x-2880=0 | | 2/b=6/15 | | 6÷/x+2=3/4 | | 6÷x+2=3/4 | | 36h2+96h+64=0 | | 21x-4=100 | | 25x-85=875 | | 5x+7=16x+70 | | 6x+16=100 | | p=300/0.08(5) | | x2+4x=−1 | | 4y+8=30-(Y-3) | | 5r+10/10=5r-10/5 | | 1/3(m+21)+2/3m=-3 | | 1/3(m+32)+2/3m=-2 | | 5/2+7x=4x-7/2 | | x+1/3+2=9 | | 1/5a+3=-4 | | -3(x/2-2)=-6 | | -29-3m=-29 | | −12+x=48 |

Equations solver categories